

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

1

SOC Fault Indication Strategy to the MCU for
the Adaptive Partitions during Bootup Stage

Vinoot Handiganoor and Basavana Gowda B2

1Department of SWX SPDO, Stellantis India.

2Department of SWX SPDO, Stellantis India.

ABSTRACT

The abstract introduces the concept of adaptive partitioning in System on Chip (SoC) technology. It
means dividing the chip's resources into different sections to meet the specific needs of different
software tasks. The main purpose is to improve performance and flexibility in scenarios with multiple
applications or tasks running simultaneously. Adaptive partitioning also has advantages like efficient
resource use, scalability, security, and system design flexibility. This paper emphasizes the importance
of a fault indication mechanism between the SoC and the MCU (Microcontroller Unit) to handle
bootloader issues during startup, especially with efficient Over-The-Air updates. The paper's focus is
on how the SoC and MCU communicate and address problems when bootloaders fail within
partitions. It stresses the need for a recovery mechanism to handle potential issues with corrupted
updates, ensuring a smooth SoC bootup process.
KEYWORDS
Network System on Chip, Adaptive Partition, Fault Indication Mechanism, Microcontroller Unit,
Bootloader, Adaptive AUTOSAR

1. INTRODUCTION
This study focuses on the communication between the MCU (TC37XX series) and the SOC
(6155 QC series) during the bootup process. Partition A and Partition B are the two
partitions that reside in the eMMC region. Communication between the MCU and the SOC
can be accomplished via GPIO or SPI. When the 6155 Chipset encounters challenges during
the boot up process, this study focuses on GPIO signalling. The overall block diagram is
shown below, and the subsequent paragraphs describe what adaptive partition is and why it
is required.

Figure 1: Overall block diagram and communication between MCU and SOC

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

2

As Over the Air update capabilities advance, the complexity rises and better bootup and
communication between MCU and SOC are required. It is described in the following
subsections why adaptive partitioning is necessary. The study goes on to discuss how
communication will be handled if the booting process halts on the SOC side, as well as how
partition management and job distribution need to be handled while handling
adaptive partitions.

1.1 What is Adaptive Partition?

An adaptive partition is a concept used in embedded systems to dynamically allocate system
resources, such as processing power, memory, and peripherals, among different partitions or
domains based on the changing workload and requirements of the system. Each partition is a
logical unit that is allocated a portion of the system resources and runs specific tasks or
applications. The need for adaptive partitions arises due to several reasons:
Adaptive partitioning provides a number of benefits to the design, development, running, and
debugging of your system.

 Engineering product performance: Adaptive partitioning allows us to optimize the

performance of the system.

 Dealing with design complexity: Designing large-scale distributed systems is
inherently complex. Typical systems have a large number of subsystems, processes,
and threads developed in isolation from each other. The design is divided among
groups with differing system performance goals, different schemes for determining
priorities, and different approaches to runtime optimization.

 Providing security: Many systems are vulnerable to Denial of Service (DOS) attacks.
For example, a malicious user could bombard a system with requests that need to be
processed by one process. When under attack, this process would overload the CPU
and effectively starve the rest of the system.

 Debugging: Adaptive partitioning can even make debugging an embedded system
easier—during development or deployment—by providing an “emergency door”
into the system.

1.2 Why Adaptive partition needed?

The following are the reasons why we need adaptive partitions.

Efficient Resource Utilization: Adaptive partitioning allows for the optimal utilization of
system resources. By dynamically allocating resources based on the specific requirements of
different tasks or applications, it ensures that each partition receives the necessary resources
to perform its designated functions. This prevents resource over-provisioning and under
utilization, leading to improved system efficiency.

Isolation and Security: Adaptive partitioning provides strong isolation between different
tasks or applications running on the system. Each partition operates independently, with its
own allocated resources and memory space. This isolation prevents interference and
unauthorized access between partitions, enhancing system security and protecting sensitive
data.

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

3

Real-Time Performance: In real-time systems, where tasks must meet strict timing
requirements, adaptive partitioning is essential. By dedicating resources specifically to real-
time tasks, it ensures that critical tasks are executed within their specified deadlines. The
partitioning scheme enables the system to prioritize and allocate resources accordingly,
guaranteeing real-time performance.

Flexibility and Scalability: Adaptive partitioning offers flexibility and scalability in system
design. As the system requirements evolve or change over time, new partitions can be added
or existing partitions can be resized without affecting the overall system functionality. This
adaptability enables the system to accommodate varying workloads and adjust resource
allocation accordingly.
Fault Isolation and Reliability: By isolating tasks or applications within separate partitions,
adaptive partitioning enhances fault isolation and system reliability. If a failure or error
occurs in one partition, it remains contained within that partition and does not impact the
operation of other partitions. This isolation improves overall system reliability and prevents
system-wide failures.
Mixed-Criticality Systems: Adaptive partitioning is particularly beneficial in systems with
mixed-criticality requirements. Different tasks or applications can be assigned to separate
partitions based on their criticality levels. Critical tasks can be allocated dedicated resources
and strict scheduling policies, ensuring their reliable execution without being affected by less
critical tasks.
Improved Development and Maintenance: Adaptive partitioning simplifies the development
and maintenance of embedded systems. Each partition can be developed, tested, and
maintained independently, allowing for modular development and easy updates. Changes or
updates in one partition do not affect the operation of other partitions, reducing the impact on
the overall system.

2. HOW ADAPTIVE PARTITION WORKS WITH RESPECT TO MCU AND

SOC COMMUNICATION?
Coordination and data interchange between the Microcontroller Unit (MCU) and the various
adaptive partitions in the System on Chip (SoC) are made possible by the communication
between the two. Here is an overview of this communication with respect to Partition
Configuration, Partition Management and Task Distribution.

2.1. Partition Configuration:

To set up each adaptive partition's unique parameters this enables distributing resources to
each partition in accordance with their needs, such as computing cores, memory, and
peripherals.
It is vital to remember that the specific techniques and tools for partition setting may change
based on the target hardware platform and the QNX OS version being utilized. Partition
configuration general overview is described below in the figure 2.

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

4

Figure 2: Partition Configuration General Overview

2.2. Partition Management

The title is Using adaptive partitioning, the SoC resources are divided into various partitions,
each of which is assigned to a certain job or set of apps. The MCU assists in controlling
these partitions by orchestrating their actions and facilitating Inter-Partition Communication.

Inter-Process Communication can be achieved using message passing, shared memory,
signals and events mechanisms.

 Message Passing: It permits the exchange of messages between the processes using
primitives for sending and receiving messages.

 Shared Memory: To alert another partition of a certain condition or request, a
partition can send a signal or raise an event.

 Signals and Events: Shared memory areas can be explicitly constructed and mapped
to different partitions, allowing them to gain access and share data in that area.

I/O Operations: using standard I/O operations such as read, write, or ioctl we can achieve
the communication between MCU and SOC. Its another way to achieve communication.

 2.3. Task Distribution

The MCU is in charge of allocating tasks or applications to the proper partitions. It chooses
which partition to carry out a specific task depending on scheduling policies, resource
availability, and priority.

Fault Monitoring and Recovery: The MCU watches for faults or errors in the adaptive
partitions. It can receive partition status updates, detect anomalies, and take recovery
operations as needed. Fault recovery may entail reallocating resources, restarting a partition,
or performing other corrective actions to restore system stability.

The communication between the MCU and adaptive partitions in a SoC allows for effective
system management, coordination, and data exchange. The end-user needs are increasing,
and software updates will be critical, with a focus on fault monitoring and recovery between
MCU and SOC as a solution to address increased deployment use cases. In some

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

5

circumstances, attackers may update faulty software or bootloaders; if partitions are not
available, there is a possibility that the SOC will not act as intended, and the bootloader will
not be able to execute if we do not have recovery from the MCU side.

Below figure depict the handling of communication between MCU and MPU.

Figure 3: Communication between MCU and SOC

Partition A in Adaptive Partition contains the functioning binary or default image, and
Partition B is utilized for over-the-air upgrades. There should be a mechanism to alert the
MCU during the boot-up phase if the update is corrupted, as there are several ways to detect
it. Otherwise, the SOC won't exit the boot-up phase. It is always preferable to create a system
that can handle a variety of scenarios robustly. Here, we will be exhibiting two such
techniques shown in Figure 4 and Figure 5. Below Figure 4 handle the communication
between MCU and SOC adaptive partitions.

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

6

Figure 4: Start-up sequence and error indication between MCU and SOC bootloader

via GPIO’s

In the image above, after the PMIC power on, the SOC primary bootloader will inform the
MCU about soc booting through GPIO pins. There will be timers running on the MCU side;
if no answer is received from the SOC indicating successful boot-up, it will store the failure
information in non-volatile memory and switch to a different partition during the next boot-
up phase. This way, we can ensure that a boot failure is detected and create a partition switch
to exit the failure scenario.

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

7

 Figure 5: Adaptive Partitions Handling

The above flow diagram depicts the internal failure check and partition switching
mechanism.In 2030, 99 OTA upgrades are anticipated, and this approach will aid in
determining whether the software is authentic or functional. If a software update is not
working well, the MCU may elect to instruct the SOC to switch to an adaptive partition that
has the default software, which is working properly or operating without any issues.

In conclusion, a trusted bootloader file starts the device startup procedure, and every phase is
only executed after the one before it has been correctly completed.

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

8

3. ADAPTIVE PARTITION CHALLENGES DURING START-UP SEQUENCES

During an embedded system's startup process, adaptive partitioning might pose a number of
difficulties. The following are some typical issues that could occur:

Boot Order and Dependencies: Dependencies between various partitions must be taken into
account throughout the startup sequence of adaptive partitions. Some partitions might
depend on particular assets or services offered by other partitions. When there are intricate
interdependencies between partitions, managing the boot order and making sure all
dependencies are appropriately addressed can be difficult.

Resource Contentions: During start-up, multiple partitions may compete for shared
resources, such as memory or peripherals. Resource contentions can occur when partitions
simultaneously request resources, leading to potential delays or conflicts. Efficient resource
allocation and scheduling mechanisms are required to handle these contentions and ensure
fair access to shared resources.

Initialization Sequence: The initialization states of certain partitions may be dependent on
those of others. The right starting sequence must be chosen in order to satisfy these
dependencies. Incorrect behavior or system problems may occur if the initialization order is
not appropriately controlled.

Start-up sequences are prone to faults and failures. Maintaining system integrity requires
finding and dealing with faults like resource allocation issues or partition initialization
failures. It is a considerable problem to implement efficient error detection algorithms and
recovery techniques to manage such circumstances. partitions. Determining the correct order
of initialization to satisfy these dependencies is crucial. If the initialization order is not
properly managed, it may result in incorrect behavior or system failures.

Error Handling and Recovery: Detecting and handling errors, such as partition initialization
failures or resource allocation errors, are essential for maintaining system integrity.
Implementing effective error detection mechanisms and recovery strategies to handle such
situations is a significant challenge.

System Complexity and Design Verification: The processes involved in system design and
design verification are getting more difficult in adaptive partitioning. To guarantee the
system works as intended, it is necessary to thoroughly verify the behavior and performance
of many interacting partitions, especially during the startup stage.

It takes careful system design, resource management methods, synchronization mechanisms,
error handling techniques, and extensive testing to overcome these obstacles. In order to
guarantee a successful and dependable start-up sequence in an embedded system with
adaptive partitioning, these issues must be properly taken into account and mitigated.

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

9

4. BEST PRACTICES TO ADDRESS ABOVE CHALLENGES
There are few best practices that can be used to create the start-up sequence for adaptive
partitions in an embedded system that will assist guarantee a quick and effective
initialization process. Here are some crucial actions to think about:

a) Clear Initialization Order Definition:

Based on the dependencies and requirements of the adaptive partitions, create a clear
initialization order for them. Based on resource dependencies and inter-partition
communications, determine which partitions must be initialized first and which can be
initialized later. This order's documentation and enforcement assure correct startup and
prevent dependencies-related problems.

b) Use Initialization Flags or Events:

Use initialization flags or events to show when each partition has finished initializing. When
a partition has finished its startup procedures and is ready to move on, these flags or events
can be used to indicate that fact. Then, before starting their own initialization, other
partitions can verify these flags or events to make sure that dependencies have been met.

c) Early Allocation of Critical Resources in the startup process:

Identify and assign the crucial resources needed by various partitions. By doing this, it is
made sure that crucial resources, such as shared memory or communication interfaces, are
accessible when they are required. Early resource allocation lowers the likelihood of
resource conflict and potential delays during partition initialization.

d) Implement Resource Management techniques:

To deal with resource contention during startup, implement resource management
techniques. Implement algorithms or scheduling rules that effectively and equitably manage
shared resources, avoiding conflicts and providing equitable resource access among
partitions.

e) Test and Validate Startup Sequences:

Validate the adaptive partition startup sequences in great detail. To ensure that all partitions
initialize correctly, make sure all dependencies are met, and the system functions as intended
during startup, conduct thorough testing. Verify the dependability and robustness of the
startup process by doing boundary case testing, stress testing, and simulating various failure
scenarios.

f) Implement reliable error detection systems:

Add error recovery techniques to your system to handle errors and restore it to a known and
stable state. Restarting failed partitions, reallocating resources, or commencing the proper
error handling procedures may all be necessary in this situation.

g) Implement logging and monitoring systems:

To record startup events and keep track of the start-up sequence's development implementing
the logging and monitoring systems is crucial. This enables thorough debugging and
troubleshooting in the event of any problems or startup failures.

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

10

h) Documentation and maintenance:

To give clear instructions for future maintenance and troubleshooting, document the start-up
sequence, including the order of initialization and any specific considerations. As the system
develops or undergoes modifications, keep the documentation current.

You can improve an embedded system's adaptive partition start-up sequence's dependability,
effectiveness, and maintainability by adhering to these best practices. It aids in ensuring
proper system initialization, proper handling of dependencies, and system readiness for
effective operation.

5. ACRONYMS
Table 1. Abbreviations.

Sl No Acronym Abbreviation
1 SoC System on Chip
2 MCU Micro Controller Unit
3 MPU Micro Processor Unit
4 TZ Trust Zone
5 HLOS High Level Operating System
6 XBL Secondary Boot Loader
7 HYP Hypervisor
8 GPIO General Purpose Input Output
9 PBL Primary Bootloader
10 PMIC Power Management Integrated Chip
11 NVM Non-Volatile Memory

6. CONCLUSIONS
If the communication between MCUs and SOC is handled effectively with an error handling
mechanism, adaptive partitions play a significant role in the over-the-air update capabilities.
It is possible to do what is outlined in the best practices with the appropriate tools and
implementations. The importance of adaptive partitions and communication between the
MCU and SOC must be considered early in the design process. Stellantis is already active
and providing solutions to allow secure communication between adaptive partitions.

ACKNOWLEDGEMENTS
The authors would like to thank everyone from the SPDO dept team. Special thanks to
Joseph Antony, Sivapalan Balanayagam and Tara Vatcher for their continuous supports.

International Journal of Computer Science and Information Technology (IJCSIT) Vol.1, No.4 October 2023

11

REFERENCES
[1] Christian Menard; Andrés Goens; Marten Lohstroh; Jeronimo Castrillon, (2020) “Achieving

Determinism in Adaptive AUTOSAR”, Automation & Test in Europe Conference &
Exhibition (DATE)

[2] Anand Bhat & Soheil Samii, (2020), “Fault-Tolerance Support for Adaptive AUTOSAR
Platforms using SOME/IP”, IEEE 26th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA)

[3] Jelena Jovicic , Mila Kotur & Milan Z. Bjelica, (2018), “Visualizing Functional Verification
in Adaptive AUTOSAR”, IEEE 8th International Conference on Consumer Electronics

[4] Anna Arestova, Maximilian Martin, Kai-Steffen Jens Hielscher, & Reinhard
German1,(2021), “A Service-Oriented Real-Time Communication Scheme for
AUTOSAR Adaptive Using OPC UA and Time-Sensitive Networking” Sensors (Basel).
2021 Apr; 21(7): 2337.

[5] QNX website from the blackberry for the technicalities

[6] Adaptive Autosar Consortium for the Adaptive Partition concepts.

Authors

Vinoot V Handiganoor

Software Development Manager – Stellantis
India

Basavana Gowda B

Technical Specialist - Stellantis India

